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Home brewed code for conversion of single precision float value to string 
When doing microcontroller programming one may have come across a task of converting a float value 

to a string. For example when a float value is to be displayed on LCD or it is to be passed out through a 

UART port. The simple method is to use sprint() function. This function is exactly same as commonly 

used printf() function. The only difference is that sprint() pass the output to an array instead of some 

kind of display. 

For example if there is a float value myFloat and it is to be converted and stored in an array myArray[] 

then sprint can be called as below: 

sprint(myArray, “%f”, myFloat); 

This is an extremely simple way to convert float to string. But the main disadvantages are the memory 

consumption and time for execution. For example I have used XC16 compiler with dsPIC33FJ32GS406 

controller and used sprintf() to convert a float value to string. It took more than 3100 program memory 

space and taken more than 3800 micro seconds for execution.  

This is an annoying situation as my codes are used in very time critical tasks. Also the program memory 

space is valuable for my projects. So I decided to check whether it is possible to develop an alternate 

way to do this. My aim is to write a function that converts a float variable to string. The formatting and 

other features of sprintf() are not needed. I developed a code which take only 212 program memory 

space (around 1/15 size) and execute within 552uS (almost 7X speed). I am narrating the code below. 

First of all note that I myself studied all the details and standards of single precision float variable. My 

conclusions may be slightly different from the actual facts. 

Limitation of the code 

The only limitation of the code is that it store the integer part with 32-bit which means  integer part 

can be up to 4294967295. If a float value with integer part more than 4294967295 is passed then code 

will return with integer part = 4294967295. This can be a problem in some situation. 

Representation of single precision variables 

Wikipedia article about it give very detailed presentation about it: http://en.wikipedia.org/wiki/Single-

precision_floating-point_format 

Float values are take 4 bytes (32 bits) of memory. The allocations of bits are as below: 

Bitt 28-31 Bits 24-27 Bits 20-23 Bits 16-19 Bits 12-15 Bits 8-11 Bits 4-7 Bits 0-3 
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Lower 23 bits represent the fractional part of the number. Next 8 bits represent the exponent and the 

highest bit gives the sign. 

The value of the above number is given by the formula      

   (  )  (  ∑      
  
      )           ---------------------- (1) 

There is nothing to worry about this bla-bla-bla equation. I am narrating this below. First we start with 

the Fractional part. 

Fraction 

The 23 bit fraction represents the number with binary point. This is similar to decimal point. In our 

usual decimal notation a number 0.1234 is interpreted as 1/10 + 2/100 + 3/1000 + 4/10000. Similarly in 

binary fractional notation a number 0.101101 is equal to 1/2 + 0/4 + 1/8 + 1/16 + 0/32 + 1/64.  

So our 23 bit fractional number written as  F1 F2 F3  . . . F22 F23  is equal to 

  
  
 
   
  
 
   
  
 
   
  
      

    
   

 
    
   

 

This is the meaning of the red colored part in the equation (1) given above. 

Sign 

The sign is a single bit value in the highest bit position. If it is 1 it means the number is negative. 

Otherwise it is a positive number. 

Exponent 

The exponent is an 8 bit number ranging from 0 – 255. Zero and 255 are used for special meaning. 127 

is subtracted from the exponent and two raised to exponent give the value of the multiplicand. So the 

value of the fraction is                     . But in the equation (1) above why we need to add 1 to 

the fraction?. This is explained below. 

Suppose we need to represent 0.25 in single precision float standard. We can write it in many different 

forms. Three representations are: 

1.               Here fraction = 00100000…  and Exponent is 1. 

2.              Here fraction = 10000000…  and Exponent is -1. 

3.               Here fraction = 000010000…  and Exponent is 3. 

There are plenty of ways to represent 0.25 in fraction + exponent form. So which way?. If we can 

represent same number in many ways it is not a scientific way. This obviously means that number of 

unique numbers we can represent with 4 bytes are less. There is a rule to overcome this. 
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The rule is that the fractional part should shift right until a 1 is shifted in to the integer part. Whenever 

we give a right shift the exponent is to be decreased. Thus the representation of 0.25 now becomes: 

               Here fraction = 1.0000000…  and Exponent is -2. 

So the fractional part will be no longer fraction alone, but will contain an integer part which is 

always 1. If the integer part is always 1 then why we should waste a memory space for that? Hence 

the integer part (which is always 1) is hidden and that is why we add a 1 in the equation 1.  

------ (A) 

The meanings of all the fields are explained. We can now convert the float value to string. 

For the easiness of splitting the float value to its components we define a union as below: 

typedef union 
{ 
 float fValue; 
 unsigned char fSplit[4]; 
 unsigned long f_LongValue; 
} FloatSplit; 
FloatSplit floatSplit; 
 
#define   floatValue  floatSplit.fValue 
#define   fSplit0   floatSplit.fSplit[0] 
#define   fSplit1   floatSplit.fSplit[1] 
#define   fSplit2   floatSplit.fSplit[2] 
#define   fSplit3   floatSplit.fSplit[3] 
#define   fExponent  floatSplit.fSplit[3] 
#define   fLongValue  floatSplit.f_LongValue 
 
The float value that is to be converted to string is to be stored to floatValue before calling the 
conversion function. Note that when the float value is stored to floatValue it is accessible as 4 bytes 
with using fSplit0, fSplit1, fSplit2 and fSplit3. It is also accessible as a 32 bit value using the long 
variable fLongValue. 

Functions 

The main function is  

void myFtoa(void) 

It takes no parameters and returns nothing. Before calling this function we have to load the float 

number to floatValue. On completion this function store the converted string to printBuff[]. For 

example if floatValue is 1234.5678 then printBuff[ ] = “0000001234.5678”. printBuff[0] to printBuff[10] 
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will hold the integer part with leading zeros as needed. If the number is –ve then printBuff[0] will be ‘-‘. 

printBuff[11] will be the decimal point and remaining space will contain the decimal part. The integer 

part will be always 11 digits with printBuff[0] holding ‘-‘ for negative numbers. If the leading zeros are 

to be truncated we have to write separate code.  

Also the fractional portion may not be exactly the same as we expect. In the above example itself we 

are expecting fractional part = .5678. But it can be 0.567799… or 0.567800122…. This is due to the 

slight and inherent accuracy problem of the single precision floating point standard itself. 

Procedure of myFtoa() 

The first part of the function split the number in to parts. The sign is stored in the 1 bit variable ‘fSign’. 

If this is set it means number is negative. The exponent of the number is stored in ‘ftoaExpon’ with sign 

indicated by the flag ‘expoSign’. For example in case of exponent = -23 ‘expoSign’ will be 1 and 

‘ftoaExpon’ will be 23. The 23-bit fractional part + the additional 1 (see comment (A) in previous page) 

will be in the lower 24 bits of the floatValue  itself. We can access it by the long variable fLongValue or 

with three unsigned char fSplit0, fSplit1 and fSplit2. 

When the split is completed function myFtoa() call extractParts() which convert the integer part and 

decimal part and store in ‘fIntegerPart’ and ‘fFractPart[ ]’ respectively. Note that fIntegerPart is an 

unsigned long variable and fFractPart[ ] is a string of unsigned char. 

Function myFtoa then store the integer part in lower 11 positions of printBuff[ ] and put a decimal 

point in printBuff[ 11] and store the decimal part from printBuff[ 12] onwards. Note that integer part is 

always stored as 11 digits and in case of negative numbers printBuff[0] will be ‘-‘. This means the 

integer part may contain leading zeros which can be truncated with additional code. 

Function extractParts() 

As stated above this function split the number to integer and decimal parts. When this function get 

control the  float number is in a splited form having the 24 bit fractional part stored in the unsigned 

long variable fLongValue. (Actually it may contain an integer part and fractional part. So do not confuse 

by the term fractional part). Note that single precision format contain 23 bit fractional part and adding 

the hidden 1 make it 24 bits. (See note (A) above for more details). The exponent of the number is 

stored in ftoaExpon and sign of ftoaExpon is in expoSign. Suppose the number is in this form. 

                 Fractional part = 1.101100…   Exponent = 1 and sign of exponent = +ve 

The exponent 21 means the fractional part is to be left shifted once which make fractional part = 

11.01100… It means the integer portion = 11 (which means 3) and real fraction = 0.01100…. So as per 

the exponent and sign of the exponent we give certain number of right or left shift to the number. First 

we will discuss with the above given example itself where exponent is positive. 
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As said above the integer part will be formed by giving left shift and adding each bit to fIntegerPart. 

When updating fIntegerPart the code take care that it do not overflow above the maximum value that 

fIntegerPart can hold. The maximum value is 232 and if an overflow happen the function stop forming 

the integer part and make the integer part = 232 – 1. This is a limitation of the code. 

Forming the decimal portion is done in a special way. Here the fractional part = 0.01100… This means  

          
 

 
 
 

 
 
 

 
 

 

  
    which means 0.25 + 0.125 

For adding the decimal numbers we keep a string ‘fTable[ ]’. If fTable[ ] = “50000…” it means 

0.5000000. If fTable[ ] = “12500…” it means 0.1250000. First we load fTable with a string 

corresponding to 0.5000. The function reloadTables() do that along with initializing fFractPart[] to 

“000000…”. Also note that fTable[] and fFractPart[] are loaded with binary values not ASCII. That is, 

fTable[ ] = “12500…” means fTable[0] = 0x01, fTable[1] = 0x02, fTable[2] = 0x05 … and so on. fTable[0] 

contain 0x01 not the ASCII of 1. Similarly for fFractPart[]. 

In our above example the number is 0.01100… which means there is no 0.50000 in the fractional part. 

So the code make fTable[ ] to half the value = 0.2500000. For this purpose the function halfFloatTable() 

is used. The fractional part contain a 1 in the 0.25 position. So the function call addFloatTable( ) which 

will add fTable[ ] to fFractPart[ ]. Now fFractPart[ ] will become “2500000” which means 0.2500000. 

Next the code call halfFloatTable() to make fTable[ ] = “12500000” which means 0.125000. The code 

then see a 1 in 1/8 position. So it call addFloatTable( ) again to add fTable[ ] to fFractPart[ ]. Now 

fFractPart[ ] will become “3750000” = 0.375000. 

The code use halfFloatTable() and conditionally call addFloatTable( ) to build up the decimal part step 

by step in to the array fFractPart[ ]. 

When the exponent is –ve the method is slightly different: 

Suppose the number is 

                  Fractional part = 1.101100…   Exponent = -3 

This in effect means 1.101100 shifted right 3 times = 0.001101100. But the code will not do the right 

shift (the code cannot do that because it will lose the bits from the LSB of the 24 bit fractional part). 

Instead of that the code call reloadTables() and then call halfFloatTable() 3 times. Then the code build 

up the decimal part step by step in to the array fFractPart[ ] in a similar way narrated above. 


